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% 15.0 INTRODUCTION

hen we price equity derivatives, the initial value of the stock is given,
Wand we construct a lattice of future stock prices. An analogous proce-

dure works for pricing interest rate derivatives. Consider pricing an
option written on a Treasury bill. Given the initial price of the Treasury bill, we must
model its possible values over the life of the option. We must do this in a way that
(1) is consistent with the absence of arbitrage, (2) is consistent with the initial term
structure, and (3) recognizes that the Treasury bill pays a known fixed amount (the
pringcipal) at maturity.

Describing this arbitrage-free evolution of the Treasury bill’s price is equivalent to
modeling the evolution of the term structure of interest rates. This presents a more
difficult problem than that encountered for equity derivatives. A number of different
solutions exist for this problem. We choose to model the evolution of the term struc-
ture by concentrating on the short-term interest rate.

In modeling the short-term interest rate, it is essential to specify how many sources
of uncertainty affect its evolution. For this chapter we assume that there is only one
source of uncertainty, giving a one-factor model. If we assumed that there are two
sources of uncertainty affecting the evolution of the interest rate, this would create a
two-factor model.' Using a one-factor model is a strong assumption because the em-
pirical evidence suggests that there is more than one factor. Nonetheless, we choose the
one-factor model to illustrate the procedure. Once this case is mastered, the multiple-
factor extension follows similarly in a straightforward fashjon. ‘

15.1 CONSTRUCTION OF THE LATTICE

Here we explain how to construct a lattice of future spot interest rates. We use the bi-
nomial model of Chapter 4, but this time for interest rate movermnents. In the next sec-
tion, we will formalize our discussion about the underlying assumptions.

“The difference between a one- and two-factor model can be understood as follows. A one-factor model has

one source of uncertainty. The randomness underlying its evolution at any node can be generated via toss-
ing one (unbiased) coin. A two-factor mode! has two sources of uncertainty. The generation of the evolu-
tion of the term structure at any node necessitates the tossing of at least swo (unbiased) coins.

455




P o e e T e o= T

o

)

456

CHAPTER 15 INTEREST RATE DERIVATIVES

For pricing interest rate derivatives, we must construct a lattice of spot intereg
rates that is consistent with the observed initial term structure. For clarity, we chooga
the time between changes in the spot rate of interest to be one year. In practice, 3
shorter interval would be used, depending on the degree of accuracy required,

The spot rate of interest corresponds to the rate of interest over the interval in the
lattice. Because our interval length is one year, we are modeling the one-year spot in.-
terest rate. If our interval length had been one week, we would be modeling the one.
week spot interest rate,

To illustrate the construction, let us consider the initial term structure in Tabja
15.1. In this table, the first column gives the years until maturity. The second column
gives the zero-coupon bond prices. The third column gives the yield-to-maturity for
each bond. The last column refers to the volatility of the spot rate of interest. In the
last column, the first number, 0.017, refers to the volatility of the spot interest rate at
the end of the first year. The second number, 0.015, refers to the volatility of the spot
interest rate at the end of the second year, given that the spot interest rate at the end of
the first year is known. This specification of the volatility at the different future in-
tervals is referred to as the term structure of volatilities.

Let B(0,) denote the date-0 value of a zero-coupon default-free bond that ma-
tures at the end of year r. From Table 15.1, observe that B(0,1)} = 0.9399. For conve-
nience, we use continuously compounded interest rates. The current one-year rate of
interest, »(0), is defined by

0.9399 = exp[—r(0}],
implying

r(0) = 6.1982 percent.

TaeLe 15.1 Interest Rates Are Assumed to Be Normally Distributed

ENITIAL DATA
MATURITY BoNp PRICES* YIELD** VOLATILITY***
(YEARS) B(0,T) {(PERCENT)
i 0.9399 6.1982 0.017
2 0.8798 6.4030 0.015
3 0.8137 6.8721 0.011
4 0.7552 7.0193 0.0075

*All bonds have zero coupons and are default-free,
**Continuously compounded yield.
**rYolatility refers to the volatility of the spot interest rate.
fihog : S S A R S e B e e R
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15.1 CONSTRUCTION OF THE LATTICE 4857

Fioure 15.1  Finding the Short-Term Rates to Price a Two-Year
Zero-Coupon Treasury Bond

Interest rate Price at t = | of one-year
zero-coupon Treasury bond

K1)y, =8.3223% B(1,2)y=expl-r(1),]
= 0.920146
7(0) = 6.1982%
r()p =4.9223% B(1,2), = expl—r(1), ]
=0.951969

Maturity (years)

At the end of the first year, we assume that the one-year spot interest rate can
take one of only two possible values, denoted by »(1),, and r( 1), respectively. This
1s the one-factor assumption, We must pick these values to be consistent with the ini-
tial term structure as shown in Table 15.1; we do this by trial and error. Let us guess
the values

r(1), = 8.3223 percent
and '

(1), = 4.9223 percent

as shown in Figure 15.1.

Let B(1,2) denote the value at date 1 ofa zero-coupon default-free bond that ma-
tures at date 2. As shown in Figure 15.1, using the date-1 spot interest rates, we can
compute the possible date-1 bond prices as

_[0.920146 it r(1),o0c0us.
B(1,2) {0.951969 i r(1), ocours.

In building this lattice, it is essential to construct it so that there are no arbi-
trage opportunities implicitly within it. We showed in Chapter 6 that in a binomial
lattice for equity derivatives, there is no arbitrage between the stock and the
money market account if and only if there exists a unique probability such that the
stock price normalized by the money market account’s value follows a martingale.
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CHAPTER 15 INTEREST RATE DERIVATIVES

We referred to this probability as a martingale probability. Fortunately, thig theo.
rem can be generalized to apply to the term structure of zero-coupon default-fre,
bond prices as well.

Although we do not prove this result here, we use the insight. Analogously
stated, in a one-factor model, there js no arbitrage among ail the Zero-coupon bondg
and the money market account if and only if there exists a unigue probability sycp,
that all the zero-coupon bond prices normalized by the money market account’s
value follow a martingale.” We utilize the “if part of this theorem for the subse.
quent analysis.

We want to ensure that the evolution of the term structure of interest rates is gr.
bitrage-free. That is, we want to ensure that no arbitrage opportunities exist among
the zero-coupon bonds and the money market account. To do this via the above-stated
theorem, we assume that there exists a unique martingale probability such that nor
malized zero-coupon bond prices follow a martingale.

This condition is that

B(0,2)/4(0) = E™[B(1,2)/A(1)], (15.1)

where A(¢) denotes the value of the money market account at date ¢.

Without loss of generality, we assume that the martingale probability of each
state occurring is 0.5.°

By definition, 4(0) = 1 and A(1) = exp(r(0)) = exp(0.061982). Substituting
into Expression (15.1) gives

B(0,2) = exp(—0.061982)(0.5 X 0.920146 + 0.5 X 0.951969)
= 0.8798,

which agrees with the value in Table 15.1. Our guess on the possible values for the
spot interest rate at date 1 is cormrect.

We must also check that our estimates are consistent with the volatility given in
Table 15.1. The volatility of the spot interest rate at time ¢ is defined to be the stan-
dard deviation of the change in the spot interest rate over the next time interval. In
symbols,

o(f) = Vvar (Ar(0) = VEArD < E~(A rEVFY.

*For a proof of this result, see Jarrow (1995).
"This assumption is without loss of generality because in constructing a lattice there are usually three uo-
knowns: (i) the magnitude of the spot tate “up,” (ii) the magnitude of the spot rate “down,” and (iii} the
martingale probability. We usually have two constraints: (i) the expected change in the spot rate, and
(ii) the volatility of the spot rate. Three unknowns-and two constraints gives 1 degree of freedom, and this
degree of freedom allows the specification of 7 = Y,
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15.1 CONSTRUCTION OF THE LATTICE 459

The volatility is computed using the martingale probabilities. Volatility measures the
dispersion or the variability in spot rates across time. As such, it is an important sta-
tistic for understanding the term structure of the interest rate’s evolution. The volatil-
ity is determined* by

a(0) = [r(1)y = r{1),]/2. (15.2)

By convention, »(1),, is greater than ().
Substituting for r(1),, and #(1), gives

[r(1y — r{1),1/2 = (0.083223 — 0.049223)/2
= 0.017,

which agrees with Table 15.1. Had we been wrong, we would have revised #(1),, and
(1), by iteration until these two conditions were satisfied. .

Continuing, at the end of the first year, if the one-year rate of interest is (1),
then at the end of the second year the one-year Spot rate can have one of two possible
values: r(2}, or r(2),. Similatly, if the one-year rate of interest at date 1 is r{l),,
then the spot rate at date 2 can take the values r(2)py or r(2),,,,, shown in Figure 15.2.
The lattice is constructed so that it recombines, ‘

We need to choose Dy 7 ()pys and #(2) b to be consistent with the observed
term structure of interest rates and volatilities, as shown in Table 15.1.

We first match the volatilities, Let us guess that r(2),,, = 10.8583 percent. From
Table 15.1, the spot rate volatility is 0.015, implying that for #(2)yy greater than
"o

o (1) = 0.015 = [ (2, — r(2yp]12, (15.3)
which in turn implies that

r(2)yp = 0.108583 — 2 X 0.015
= 7.8583 percent,

‘If a random variable can take one of two possible values, a or &, with probability p and (1 — p), respec-
tively, then

1} expected value = a2 X p + 5 x (1 -
and
2) variance, ¢@ .
ST la—lap + 51 = p)IYp + (B — fap + B(1 — pIF(L - p)
= {a = &)'p(l - p).

In this example, p = %), a = r(1},, and b = r(1),-
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Fiecure 15.2 Finding the Short-Term Rates 1o Price a Three-Year
Zero-Coupon Treasury Bond

r(Z)UU = 10.8583%
B(2,3)= CXP[“"'(Z)UU}
= 0.897104

r(1), = 8.3223%

r{0)=6.1982% H2)yp="T8583%
B(2,3) = expl-r(2)yp}
= 0924425

r(1), = 4.9223%

r(Qpp = 4.8583%
B(Z,3) = expl-r(2)pp]
= (952578

| I I .

0 1 2 ITdaturity (years)

B R LN TR DOERE B T MR IR T S SR R A O B AR L

If at date 1 the one-year spot interest rate is r(1),, then because r(2),,, is greater than
r(2)pps

o(1) = 0.015 = [r@)py — r2pol/2,

implying

r(2)pp = 0.078583 — 2 X 0.015
= 4.8583 percent.

These choices of the date-2 spot rates match the term structure of volatilities. We next
check to see if these values are consistent with the initial term structure of interest rates.
Using the three different spot rates previously computed, the three values for the
bond prices for B(2,3) are shown in Figure 15.2.
To ensure no arbitrage, the bond prices in the lattice must satisfy the following
condition:

B(1,3)/4(1) = E™[B(2,3)/A(2)]. _ (154)

We compute these values. At the end of the first year, the spot interest rate can either
be 8.3223 percent or 4.9223 percent. Suppose that we are at the upper node in the lat-
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153.1 CONSTRUCTION OF THE LATTICE 461

tice, where »(1),, = 8.3223 percent, The value of the money market account at the end
of the first year is

A(1) = exp(0.061982), (15.5)

and at the end of the second year it is

A(2ZY, = exp(r(0)) X exp(r(1),) = exp(0. 061982) X exp(0.083223).  (15.6)

It is important to realize that at the end of the first yeat, given that we are at the upper
node, this value of A(2),, is known. Therefore, substituting Expressions (15.5) and
(15.6) into Expression (15.4) and simplifying gives

B(1,3)y = exp(—0.083223)E"[B(2,3)]

= exp(—0.083223) X (0.5 X 0.897104 + 0.5 X (.924425)
- = 0.838036.

Fieure 15.3 Lattice of Short-Term Rates

10.8307%

10.8583%

8.6307%

6.1982%

4.9223%

6.4307%

4.8583%
4.2307%

! .
3 Maturity (years)
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Ficure 15.4 Fvolution of the Term Structure

B(1,1)=1

B(1,2) = 0.9201
B(1,3)=0.8380
B(1,4)=0.7650

r(1), = 8.3223%

B(O, 1) =0.9399
5(0,2)=0.8798 r(0) = 6.1982%

B(0,3)=0.8137
\—> r(1), =4.9223%

B(0,4) = 0.7552
B(1,1)=1

B(1,2)=0.9520
B(1,3)=0.8934
B(1,4)=0.8380

B B R e L R T A O A PR A S O F L RSB S 1Y 0

Suppose that at the end of the first year we are at the lower node in the lattice, so
the spot interest rate (1), is 4.9223 percent. The value of the money market account
at the end of the first year is

A(l) = exp(0.061982)
and at the end of the second year it is
AQR), = exp(r(0)) X exp(r(l),) = exp(0.061982) X exp(0.049223),

Again, A(2),, is known at this node. Substituting into Expression (15.4) and simplify-
ing gives

B(1,3), = exp(~0.049223) X (0.5 X 0.924425 + 0.5 X 0.952578)
= 0.893424.

Finally, at time 0, to ensure no arbitrage, the price of B(0, 3) must satisfy the fol-
lowing condition:

B(0,3)/A(0) = E™[B(1,3)/4(1)].

We check to see if the above condition is satisfied. Substituting in the relevant quan-
tities gives
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B(0,3) = exp(—0.061982) X (0.5 X B(1,2), + 0.5 X B(1,2),)
= exp(—0.061982) X (0.5 X 0.838036 + 0.5 X 0,893424)
= 0.8137, :

which agrees with the initial value in Table 15.1.

We leave to the reader to verify that the spot interest rates given in Figure 15.3
correctly price the four-year zero-coupon Treasury bill in Table 15.1.

Figure 15.3 describes the spot interest rate process given the initial term structure
of interest rates and volatilities. It also implies the evolution of the term structure of
interest rates, illustrated in Figure 15.4, in which the initial term structure is shown
and its evolution is given up to date 1.

Our discussion of lattice construction is now complete.

15.2 SPOT RATE PROCESS

Here we present the general model for the spot rate process. We formalize our previ-
ous example and explain the underlying structure. For the most part, this involves lit-
tle more than replacing numbers with algebraic symbols.

First we need to make some assumptions about the probability distribution ap-
proximated by the evolution of the spot interest rates in our lattice. We consider two
possible cases: (1) changes in interest rates follow a normal probability distribution,
and (2) changes in interest rates follow a lognormal probability distribution. Both
cases are used in practice,

in the lattice, so
‘market account

Normal Distribution

If one believes that changes in spot interest rates are normally distributed.’ then the
evolution of the spot interest rate can be described by

3223). Ar(®) = [a(t) — bO*(O]A + o (AW, , (15.7)

4) and simplify- where Ar(f) = r(t + A) — r(&), A is the length of the time interval, a(z), b(r) are pa-
rameters, o°(#) is the volatility at date £, and AW(¢) is a normally distributed random
variable with zero mean and variance A.

Expression (15.7) is under the equivalent martingale probabilities and implies
that spot interest rates are normally distributed. This normality assumption is a con-
tinuous time limit of the Ho-Lee (1986) model.

The parameters a(t), b(¢), and & (¢) are deterministic functions of time and are in-
dependent of the spot rate, 7 (£). This functional dependence on date ¢ is necessary for
the implied zero-coupon bond prices to be calibrated to match the observed initial
term structure of interest rates.

578)

it satisty the fol-

e relevant quan-

*As discussed in the following text, this belief s under the martingale probabilities, #ot the actual or empiri-
cal probabilities.
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Under Expression (15.7) we have

E™Ar(#) = [a(t) — b(t)r()]A
and

Vivar (Ar(f) = o(f)VA .

The expected change in spot rates is determined by the parameters a(f) and b(1). The
volatility of the change in the spot rate is o/(£)\/A. These parameters can be estimateq
from historic time series observations of changes in spot rates using standard statisti-
cal procedures. Alternatively, they can be implicitly estimated by calibrating the
model’s values for bonds and derivatives to market prices.

Analogously to Chapter 4, we can approximate this process with a binomial model:

ey = |18 — BOF®OIA ¥ 6(f)VA with probability Y.
retA) —r = {[a(t) = b(1)r(]A — o()VA with probability t,*  (15:8)

For example, if today’s spot interest rate is #(0), at the end of the first interval the spot
interest rate takes one of two values:

F(Dy = r{0) + [a(0) — b(0)r(0)]A + o(0)V'A with probability ,
and

r(1)p =r(0) + [a(0) — bO(0)]A — o(0)VA with probability ,.  (15.9)

Note that #(1),, > r(1),, given that the volatility o(0) is positive.
From Expression (15.9) we have
[r(Dy ~ 7(1),)2 = o (0)VA. (15.10)
We can now recognize Expression (15.2) in the previous example as being a special
case of Expression (15.10) in which the time interval A is set equal to one.

It is easy to generalize Expression (15.10). At date ¢, if the spot interest is r(¢),
then one period later, using Expression (15.8), the interest rate will be either

r(t + Ay — r(®) = [a@®) — bOrMA + e()VA
ar

r{t+ A, ~ r() = [a(t) — BEOrOIA ~ o()VA.
Subtracting the above two equations gives
{r(t + A, — r{t + A),)/2 = o(f) VAA. (15.11)

This expression shows how the term structure of volatilities determines the spread
between the two possible spot interest rates at date £ + A.
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The level of the spot interest rates at date ¢ + A is determined by the initial term
structure of interest rates via the martingale relation satisfied by the normalized zero-
coupon bond prices.

The path of the short-term interest rate over two intervals is shown in Figure
15.5. Referring to Figure 15.5, we investigate when the lattice recombines, that is,
whether r(2),,, equals 7(2),,,,.

For these two rates to be equal, we require that

r(Dy + la(l) = B(I)r(1),]1A - o(1)VA
= r(1), + [a(1) — B(1)r(1),]A + o (1)VA,

which implies
[r(Dy = r(Dp)2 = BAL (1), ~ r(1),)/2 = o(1)VA.
Substituting Expression (15.10) into this equation gives, after simplification,
[1 ~ B(DAe(0) = o(1). ' (15.12)

This equation determines the parameter 5(1).

Ficure 15.5 The Short-Term Rate Process

gy =r(y +p DA+ (1WA

r(1y =r(0) + 1 (0) A+ (OWA

: r(2)UD =r(I)U +F(1)UA— 0(1)’\/_A

rDpy =r(Dp +p(1y A+ o(LVA

Q)

1
T
[

r(1)p = r(0) +u(0) A~ o(OWA

r@pp =r(l)y +p(1)ps-o(lVA

#(0) = a(0)— 5@O)r(0)
#)y = a(1) - B()r(1),
#(Dp = a(l) - b(r(l),
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Expression (15.12) implies that the parameters b(1), o(0), and (1) are related.

In Expression (15.12), for b(1) to be positive, that s, b(1) > 0, the volatility of the
Spot rate at date 1, o(1) must be less than the volatility at date 0, o(0), that is, the
volatility of the spot rate of interest must decrease over time. If b(1) = 0, volatilitieg
are constant across time. Finally, if b(1) < 0, volatilties increase,
We can show that if b(f) is positive, that is, b(f) > 0, the time-conditional variance

of r(¢) is bounded. This follows because a(¢) is decreasing in ¢, so its largest value (the
upper bound) occurs at date 0. It is not the case if b(¢) is zero for all ¢, for then the vari-
ance is proportional to 7. The Ho-Lee (1986) model, for example, assumes b(1) is zero,
In the financial economics literature, Expression (15.7) is usually thought of a5
implying mean reversion, that is, spot interest rates tend toward a long
This is misleading because Expression (15.7) describes the interest rate movementg
under the equivalent martingale probabilities and not the empirical or true probabil.
ties. The behavior of spot rates differ under these two different probabilities. An g]-
ternative and more precise way of describing Expression (15.7) is to say that the
unconditional variance of the spot interest rate is finite.®
Given that we have determined the spot rate at each node of the lattice, we do not
need to explicitly calculate the actual values of the parameters {a(t)} and {b(5)}.
They are implied by the lattice. It should be noted that the term structure of volatilj-

ties implicitly determines the parameter {b(¢)}, while the term structure of interest
rates implicitly determines the parameter {a(¢)}.

-Tull mean,

m Normal Distribution B

We illustrate here the calculation of the parameters a(z), b(¢) for normally dis- -
tributed spot rates. We use the information in Figure 15.3 and Table 15.1 to
compute the values of a(¢) and (7). The length of each
plying A = 1.

Recall that Figure 15.3 gives the spot interest rate evolution consistent with
the initial term structure of interest rates and volatilities in Table 15.1. For the -~
first period, using Expression (15.9),

interval is one year, im-

a(0) = 6(0)r(0) = r(1), — r(0) - o(0)
= 0.083223 — 0.061982 — 0.017
= 0.004241

and

a(0) = 5(0)r(0) = r(1), — r(0) + o(0)
= 0.049223 — 0.061982 + 0.017
= 0.004241.

“This is explained in Musicla et al. (1993).
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15.2 SpoT RATE PROCESS ae7r
This is one equation in two unknowns, Without additional information we do
not have an unigue solution, so arbitrarily’ we set

a(0) = 0.004241
b(0) = 0.0.

For the second period, if »(1),, = 8.3223 percent,

i

a(l) = b() X r(V)y = r@2)yy — r(1)y — o (1)
0.108583 —~ 0.083223 — 0.015

= (.01036

and

a(l) + b(1) X r(1)y = @, = r{L)y + o(1)
o Q. 078583 -0, 083223 + 0 015
= (. 01036

"Rather than arbitrasily determining a(0), 5(0), we could have calibrated them to some other market
observable.
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Given the value of (1), then

a(l) = 0.01436 + b(1) X 0.049223
= 0.02015094,

implying that we have consistency.
We Ieave it to the reader to verify that

a{2) = 0.01767_’947
and

B(2) = 0.2666667. w i

Lognormal Distribution

In the previous section we studied a model in which spot interest rates are normally
distributed. This is a convenient assumption, for it allows us to derive closed form so.
lutions for many types of interest rate derivatives. However, this assumption implies
that spot interest rates can be negative. We can see this via Expression (15.7) by notic-
ing that if AW(¢) takes on a large negative value (by chance), then r(¢ + A) can be neg-
ative. Negative spot rates generate zero-coupon bond prices above their face value,
This situation is inconsistent with the availability of cash currency, which can be stored
at no cost.® For this reason, it is usually considered an undesirable property.

One way to avoid this implication is to assume that the logarithm of the spot in-
terest rate is normally distributed. Let

v(t) = In [r(1)].

Assuming that v(z) is normally distributed implies that the interest rate #(t) cannot be
negative and is lognormally distributed.®
Based on this insight, we assume that

Av(r) = [a(?) — bW (YA + o(HAWF(, (15.13)

where Av(f) = v(t + A) — v() = 1In r(t + Ay — In r(A). This assumption underlies
the Black, Derman, and Toy ( 1990) model.

8Sur[n'isingly, in November of 1998, Japanese yen deposits in Western banks paid negative interest rates.
News reports attributed this to credit risk, an issue we discuss in Chapter 18.

*For example, given that r(#) = exp[v(1)], if v(t) = —2.5, then r(r) = 0.082, which is positive.
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Under Expression (15.13) we have

E™(Av(e) = [a() — b ()]A
and

Vvar " (Av(1)) = a()VA.

The expected change in the In r(¢) is determined by the parameters a(f) and ().
The volatility of the change in In r(¢) is o(r)\/A. These parameters can be estimated
historically using time series data or implicitly using market prices.

Because Expression (15.13) is similar to Expression (15 .7}, the binomial lattice
of spot interest rates approximating Expression (15.13) can be constructed in a simi-
lar manner. -

We illustrate this construction now. Given the spot interest rate at date t, v (),
we compute v(f} = In r(#). Using Expression (15.13), the value of v at the next in-
terval is

— wip) = 11800 — B(OV(OIA + () V/A with probability 1/2
vt a) v = [{a(t) — b{)v()]A — o(t) /B with probability 1/2,

(15.14)
In the. “up state”
v(t + A)y — v(1) = [a(®) — bEV(OIA + o() VA
and in the “down state”
v(t + A)p — (1) = [a(?) ~ bEWDIA — o(t) VA .
Subtracting the above two equations gives

vt + Ay, — v(z + A), 12 = o () VA, (15.15)

which is analogous to Expression (15.11). In terms of the spot interest rate, this
becomes

{In[r( + A)y/r(t + A),132 = 6 () VA. (15.16)

Compare Expression (15.11) with Expression (15.16). The difference in these
expressions implies that the magnitude of the volatilities for the. lognormal dis-

tribution can be substantially greater than those for the normal distribution. In
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Tanie 18.2 Interest Rates Are Assumed to Be Lognormally Distributed

INITIAL PaTA
MarTuRiTY Bonp Prices* YieLp

(YEARs) B(@©G,7) (PERCENT) VOLATILITY**
1 0.9399 6.1982 0.2
2 0.8798 6.4030 018
3 0.8137 6.872]1 0.17

*All bonds have zero coupons and are default-free,
**Volatility refers to the volatility of the logarithm of the spot interest rate.

Table 15.2, a term structure of volatilities is shown, assuming that interest rates are
lognormally distributed. Compare the magnitude of the numbers in this table to
those in Table 15.1. The numbers in Table 15.1 are approximately equal to r(f)
times the numbers in Table 15.2. This makes Sense, as Vvar(Ar(t)) = ¢(£)VA in
Table 15.1, using Expression (15.7), and \/var (Ar(0) = r(Hot) VA in Table
15.2, using Expression (15.13).1°

""Using Expression (15.1 3,
var[Av(?)] = o()*A.

By definition,
Av{f)=lnr@+A)—In r{e).

We can write

r{t + Ay = r(1) + Ar()
=r(O0l + Ar(Dir]

so that
Inr@+y=1n #() +n[1 + Ar(eyr(n).
Hence

Av(#) = Inf} + Ar(yr(t)]
= Ar()/r ().

Therefore,

var[Av(B)] = {var[Ar(O]}/r ()7,
implyi._ng

Vvar[Ar() = 1) ()VaA.
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Lognormal Disiribution
We illustrate in this example the computation of the parameters for lognormally
distributed spot rates. We use the information in Table 15.2 to construct the lat-
tice of spot interest rates for the lognormal case. The current spot interest rate
is given by
0.9399 = exp{—r(0)],
implying
r(0) = 6.1982 percent.
. At date 1,letusgues‘s.tlhat‘ L
L P(1)y ="7.9221 percent, which imiplies that B(1,2)5="0.923836, . .
P '.d‘» By . .
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At date 2, let us guess that

r(2)yy = 10.8922 percent, which implies that B(2, 3y = 0.896800,
7(2)yp = 7.5993 percent, which implies that B(2,3)y, = 0.926823,

and
*(2)pp = 5.3018 percent, which implies that B(2, 3)pp = 0.948363,

Substituting into Expression (15.15) gives the volatility for the upper node in
the lattice:

o(1) = [In(0.108922) — In(0.075993))/2
= (.18

and, for the lower node in the ]attice-,

o(l) = [In(0.075993) — In(0.053018)]/2
= 0.18.

AR eI Y [N Y

These estimates match the volatility specification in Table 15.2.
Atr=1,

B(1,3)y = exp (—0.079221) X [0.896800 X () + 0.926823 x A
= 0.842364

and

B(1,3); = exp(~0.053103) X [0.926823 X (1) + 0.948363 x )]
= (.889103.

The current value of the three-year zero-coupon bond is

B(0,3) = exp(—0.061982) X [0.842364 X (4,) + 0.889103 % )]
= 0.8137, ,

" which agrees with Table 15.2. The binornial lattice is stiown in Figure 15.6.

We leave it to the reader to verify that over the first period, the values of He
parameters for the spot interest rate process are given by

a(0) = 0.0454

and

b(0) = 0.0,
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Fiaure 18.6 Short-Term Interest Rates,
Lognormal Distribution

10.8922%

7.5993%

5.3103%

5.3108%

| i i >

0 1 2 Matusity (years)

15.3 VALUING OPTIONS ON TREASURY BILLS

Given the arbitrage-free evolution of the spot interest rate process, the risk-neutral
valuation procedure of Chapter 6 enables us to price interest rate derivatives. In this
section we show how to use the material in Chapter 6 to price and hedge options on
Treasury bills. .

Consider a Evropean call option that matures at date 7, with strike price K, writ-
ten on a Treasury bill that matures at a later date, T'. The value of the call option at ex-
piration is

BIT)-K if -BIT)>K

of)= {0 if  BLI)<K (15.17)
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Fieure 15.7 Pricing a European Put Option on Treasury Bills
(Based on Figure 15.2)

—
t=9 t=1 t=2 Treasury bill Put option
prices prices¥
10.8583% 0.897104 0.0278%6
p(1)=0.013099 8.3223%
p(0) =0.006285 6.1982% 7.8583% 0.924425 0.000575
p(1) =0.000274 4.9223%
4.8583% 0.952578 0

* The exercise price is 0.9250.
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given in Table 15.1. We observe in Figure 15.7 that there are three possible Treasury
bill prices at date 2 and thus three possible put option prices (0.027896, 0.000575, 0).

At the end of the first year, if the spot interest rate is 8.3223 percent, the value
of the put option is

p(1), = exp(—0.083223)E"[ p(2)]

= exp(—0.083223) X (0.5 X 0.027896 + 0.5 X 0.000575)
= 0.013099

and, if the spot rate is 4.9223 percent, the value of the put option is

P(1)p = exp(—0.049223) X (0.5 X 0.000575 + 0.5 X 0)
= 0,000274,

The value of the put option today is

it

P(0) = exp(—0.061982)E ™[ p(1))
exp(—0.061982) X (0.5 X 0.013099 + 0.5 X 0.000274)

0.006285,

This completes the valuation procedure.

A Replicating Portfolio

Suppose we want to construct a portfolio to replicate this option. From Table 15.1,
we have the one-, two-, three-, and four-year zero-coupon bonds at our disposal.

" How many assets do we need to replicate the option? At date ¢ = 1, the end of the

first interval, the option takes one of two possible (different} values, either
0.013099 or 0.000274. Therefore, we need at least two different assets in the repli-
cating portfolio. But which two assets should we use? We could use any pair of the
bonds-—either

a) the one-year and two-year zero-coupon bonds,
b) the one-year and three-year zero-coupon bonds,

or

c) the two-year and three-year Zero-coupon bonds.

For simplicity we ignore the four-year. zero-coupon bond, but it could also be in-
cluded. We could use the money market account as one of our assets, but it would be

equivalent to rolling over the one-year zéro-coupon bond in the replicating portfolio
and is therefore omitted.
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Consider using the one-year and two-year zero-coupon bonds to form the syp.
thetic put. At date 0, the value of this replicating portfolio is

V(0) = n, 0.9399 + n, 0.8798,

where #, is the number of one year zero-coupon bonds and », the number of two-year
zero-coupon bonds.

By construction, the value of the replicating portfolio at the end of the first pe-~
riod must equal the value of the put option. Referring to Figures 15.1 and 15.7, thig
implies that :

ml + n, 0.920146 = 0.013099
and
n 1+ n, 0951969 = (.000274,

which gives two equations in two unknowns. The solution is

n, = 0.383927
and
r, = —0.40301, (15.19)

The cost of constructing the replicating portfolio gives the value of the synthetic put
option, that is,

Y(0) = 1, 0.9399 + n, 0.8798
= 0.006285,

which must be the value of the traded put option to avoid arbitrage.
If we use one-year and three-year zero-coupon bonds to form the replicating
portfolio, the portfolio holdings can be shown to be

n, = 0.207145
and (15.20)
ny = —0.231548,

where n, is the number of one-year zero-coupon bonds and #, the number of three-
year zero-coupon bonds. The cost of constructing the replicating portfolio is

V(0) = n, X 0.9399 + n, X 0.8137
= 0.006285,

which represents the arbitrage-free value of the traded put. Of course, this is the same
value computed earlier.
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Finally, if we use two-year and three-year zero-coupon bonds to form the repli-
cating portfolio, then

ny = 0.472227
and (15.21)
ny = —0.502965,

where n, is the number of two-year zero-coupon bonds and n, the number of three-
year zero-coupon bonds, The cost of constructing the synthetic put is

V(0) = n, X 0.8798 + n, X 0.8137
= 0.006285,

which is the value of the put option.

Each portfolio, by construction, replicates the payoffto the put option. From a the-
oretical viewpoint we should be indifferent in choesing among the three different repli-
cating portfolios. In practice, however, other considerations may indicate a preference
for a particular replicating portfolio. We will return to this topic in the next chapter.

Call Options

The valuation procedure for European call options on Treasury bills is identical to that
used for European puts. To gauge your understanding, you should check the values
given in Figure 15.8 for a two-year European call option with strike price 0.925 writ-

fen on a zero-coupon bond that has a maturity of one year when the option expires.

Put-Call Parity

Here we discuss put-call parity between options on Treasury bills. Consider a
European call option and a European put option, both written on a Treasury bill that
matures at date T,. The options expire at date 7 and have a strike price of K.

The put-call parity relationship between the options is

P+ BLT) = c(f) + K X B, T). (15.22)

The proof of this put-call parity relation is identical to that contained in Chapter 3 and
is therefore omitted. :

Let us use the results in Figures 15.7 and 15.8 and Table 15.] fo verify
Expression (15.22). From Figure 15.7 and Table 15.1, the left side of Expression
(1522) is .

P(0) = 0.0063
B(0,3) = 0.8137
Total = 0.82.
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Fisure 15.8 Pricing a European Call Option on Treasury Bills
(Based on Figure 15.2)

Treasury bill Call option
t=0 t=1 =2 prices prices*

— 10.8583% 0.897104 0

c(l)=0 - 8.3223%
<(0) = 0.006169 7.8583% 0.924425 0
c(1}=0.013127 4.9223%

4.8583% 0.952578 0.027578

* The exercise price is 0.9250.

D R S R R A R A

From Figure 15.8 and Table 15.2, the right side of Expression (15.22) is
c(() = 0.006169
K X B(0,2) = 0.925 X 0.8798
Total = (.82.

These values are the same, which verifies Expression (15.22).

15.4 TREASURY BILL FUTURES

We now show how to price and hedge using Treasury bill futures. In practice, futures
contracts are often more liquid securities than the Treasury bills themselves, making
them a better hedging instrument. :

Given the arbitrage-free lattice of shori-term interest rates, the determination of
futures prices is relatively straightforward.

Pricing

Let us demonstrate how to determine Treasury bill futures prices. Consider a futures
contract that is written on a one-year Treasury bill. Let the futures contract delivery
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date be at the end of the second year. Let F(1,2) denote the futures price of this con-
tract at date z = 0, 1,2.

At the delivery date of the contract, the futures price equals the spot price of the
one-year Treasury bill. Hence

F(2,2) = B(2,3).

In Figure 15.9, we see that three values are possible: 0.897104, 0.924425 ,» and
0.952578.

At the end of the first year, two spot interest rates are possible: 8.3223 percent
and 4.9223 percent, Suppose that we are at the upper node with a spot interest rate of
8.3223 percent.

Under the martingale probabilities, we know from Chapter 6 that futures prices
are martingales. Therefore, from Expression (6.25) of Chapter 6,

F(1,2), = E"[F2,2)]
=105 X 0.897104 + 0.5 X 0.924425
= (.910765.

If we are at the lower node so that the spot interest rate is 4.9223 percent, the futures
price is similarly determined:

F(1,2), = EF2,2)]

=0.5 X 0.924425 + 0.5 X 0.952578
= (.938502.

FiGURE 15.9 Treasury Bill Futures Prices (Based on Fi igure 15.2)

=0 \ t=1 =32 Futures prices
: F(2,2)

10.8583% 0.897104

F(1,2)=0.910765 8.3223%
7.8583% 0.924425
F(1,2)=0.938502 4.9223%

4.8583% 0.952578
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Today, the futures price is

#(0,2) = E”[F(1,2)]
= 0.5 X 0.910765 + 0.5 X 0.938502
= 0.924634.

This completes the calculation of the Treasury bill futures prices.

Hedging

We now study hedging with Treasury bill futures. We have derived futures prices
(Figure 15.9) and put option prices (Figure 15.7) for contracts written on one-year
Treasury bills. These results are summarized in Figure 15.10.

We define the put option’s delta with respect to this futures contract in the same
way as we define deltas for equity options. It is the ratio of the change in the option
prices across the two possible states to the change in the futures prices. For the put op-
tion, the delta is

A, = (1.3099 — 0.0274)/(0.910765 — 0.938502)
= —0.4624.

Suppose that we want to form a portfolio using the fitures contract to replicate
the option. Today we invest B dollars in the short-term riskless asset and enter into m

Ficure 15.10  Treasury Bill Futures Prices and Put Option Prices
(Based on Figures 15.7 and 15.9)

=0 t=1 t=2 Fufures prices Put option
F(1,2) prices

10.8583% 0.897104 0.027896 M

F(1,2) =0.910765
p(1) = 0013099

8.3223%

F(0,2) = 0.924634 7.8583% 0.924425 0.000575

p(0) = 0.6285

6.1982%

F(1,2) =0.938502 4.9223%
p(1) =0.000274

4.8583% 0.952578 0
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futures contracts.'! Each dollar invested in the short-term riskless asset yields 1.0639
(= exp(0.061982)). The initial cost of constructing the portfolio is

V(0) = m X 0 + B,

given that the initial value of the futures contract is zero.
If the short-term interest rate goes to 8.3223 percent, the option value is

0.013099. By construction, we need
0.013099 = m(0.910765 — 0.924634) + B(1.0639),

where the first term on the right side is the cash flow from the investment in the fu-

tures contracts. .
If the spot interest rate goes to 4.9223 percent, the option value is 0.000274. By

construction, we need
0.000274 = m(0.938502 — 0.924634) -+ B(1.0639).
This gives two equations in two unknowns. Solving for m and B gives

m = (0.013099 — 0.000274)/(0.910765 — 0.938502)
= —0.4624 .

and
B = 0.6285.

The solution is to short 0.4624 futures contracts and invest 0.6285 dollass in the risk-
less asset. '

Given that this portfolio replicates the payoffs to the put option, the value of the
traded option must equal the cost of constructing this synthetic option:

r@®=v(0)=5.

If we had written the traded put option as well, this synthetic put held in conjunc-
tion with the traded option would yield a hedged portfolio. Indeed, by writing, 0.4624
futures contracts and investing 0.6285 dollars in the riskless asset, we can completely
offset the risk of writing the option. This would be a zero-investment position because
the investment in the short-term riskless asset is financed by the proceeds from writ-
ing the option.

Our discussion of Treasury bill futures contracts is now complete.

"'This is equivalent to forming the portfolio using #, one-year Treasury bills and m futures contracts,
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15.5 SUMMARY

We show in this chapter how to construct an arbitrage-
that is consistent with the following: ( 1) the current
and (2) the current term Structure of volatilities. [n ¢
specify the process describing the evolution of the sp
distributions; the first has interest rateg normally dis

free Jattice of spot interest rate;
term structure of interest rates
onstructing this lattice, we mus;
ot interest rate, We consider fyq
tributed, which implies that

[t + &)y = r(t + A),)2 = 6 (1) V.,

The second distribution h

as interest rates that are lognormally distributed, which im-
plies that

Un[rt + A),ir(s + A), 132 = o(VA.
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'QUESTIONS

Question 1 Put-Call Parity for Furopean Treasury Bill Options

Consider a call option and a put option that mature at date T and with strike price K,
The options are written on a Treasury bill that matures at date 7. Prove the following:
PG+ B(t,T) = c(t; 7)Y+ K X B(t,T).

(Hint: The proof is very similar to the put-call parity result in Chapter 3.}

Question 2

In the following figure, you are given the lattice of six-month continuously com-
pounded interest rates, which have been derived using the lognormal spot rate model.
The time interval used in the Iattice is six months.

5.96%
'5.20%

5.17%

The equivalent martingale probability of an up or down state occurting is '/,. The
payoff to an interest rate cap that matures in six months’ time is defined by

cap(0) = Max [%%%?, O} X Principal,

where R(6) is the six-month (simple) interest rate when the option matures, X is the -
strike price, and Principal is the principal amount.

a) The interest rates in the lattice are continuousiy compounded rates, while the
payoff to the cap is defined in terms of simple interest rates. Show that the pay-
off to the cap can be written in the form




